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Abstract The finite element method is employed to
study open, arbitrarily-configured two-dimensional
transmission line structures in the quasi-TEM
regime. An improved version of a previously
developed asymptotic boundary condition(ABC) is
used to truncate the open region. Results for two-
and six-conductor configurations are presented to
illustrate the superiority of this method over both the
conventional approach where a perfectly conducting,
enclosure is employed to truncate the FEM mesh, and
the original ABC introduced previously by the
authors. The results presented are of particular
interest for estimating crosstalk and signal distortion
in printed circuits.

I. Introduction

With the continuous advances in solid state devices
technology in terms of both speed and size, a number
of challenges are presented to the packaging engineer
who has to accommodate a multitude of these devices
on a limited real estate available on the circuit board.
In the absence of reliable design tools, digital circuit
packaging is carried out through a costly and lengthy
trial and error process. Thus there exists a critical
need for computer-aided design tools that are capable
of predicting the electrical performance of a given
package, e.g., crosstalk and signal distortion, in a
reliable fashion. Understanding how printed circuit
layouts can affect these quantities is essential for
improved package designs. A first step toward
achieving this goal entails the investigation of the
signal integrity for a class of arbitrarily-configured
two-dimensional transmission line structures.

A plethora of techniques are available in the
literature for dealing with different transmission line
configurations. However, a majority of these
approaches are limited in their application to thin
conducting etches and/or to structures containing
dielectrics with planar interfaces. In contrast, the
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finite element method(FEM), can handle conductors
with arbitrary cross-sections and arbitrarily
inhomogeneous dielectrics. However, one drawback
of FEM is that, in dealing with open region
problems, it requires the introduction of an artificial
outer boundary in order to limit the number of node
points to a manageable size. The most common
method for truncating an open region is to use of a
perfect electric conductor as an external shield or to
employ infinite elements for the same purpose [1-5].
Both of these approaches have major drawbacks and
attempt was made in [6] to overcome some of them
by applying an asymptotic boundary condition (ABC)
on the outer boundary. The asymptotic boundary
condition mimics, to a certain degree, the behavior
of the field at infinity and is designed to yield
accurate results in the interior region without the
need for an exorbitantly large number of mesh
points. Furthermore, the use of ABC does preserve
the sparsity of the discretized finite element matrix
and is, therefore, an attractive candidate for
numerical applications. It was demonstrated in [6]
that the asymptotic boundary condition consistently
yields results that are more accurate than those
obtainable with a perfectly conducting shield placed
at the same location. However, in some situations,
the accuracy obtained with the ABC presented in [6]
was not adequate. This lack of accuracy is
attributable to the fact that the asymptotic boundary
condition operator used in [6] was based only on the
use of the first two terms of the asymptotic
representation of the solution to the Laplace
equation.

In this paper, we attempt to circumvent this
problem by deriving a higher-order asymptotic
boundary condition. This boundary condition, unlike
the one used in [6] which assumes that in the far
region the solution can adequately be represented by
the first two terms of the series, requires that the
asymptotic representation be a combination of both
the lower- and higher-order terms. As will be
demonstrated later, a significant improvement in the
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finite element solution is achieved for both two- and
six- conductor configurations when the higher-order
ABC is used.

II. Derivation of the Higher-Order
Asymptotic Boundary Condition

Consider the problem of N arbitrarily-shaped
conductors embedded in a multilayered medium
above a ground plane, shown in Figure 1. Let Qp
denote the region exterior to the conductors and I'z
the outer boundary enclosing the truncated region.
The potential u must satisfy Laplace's equation
everywhere in QT, the constant potential condition
on the conductors, and the asymptotic boundary
condition on the outer boundary I';. Equivalently,
the problem can be described in terms of the
following equations:

V-(eVu) = 01in Qp (D
u=g; on the i"™ conductor (2)
Byu=0o0nT, (3)

where u is the electrostatic potential and By, is the
mth order asymptotic boundary condition.

Ground Plane

Figure 1. Multi-conductor transmission line in a
multi-layered dielectric region above a
ground plane.

In previous work [6], the asymptotic boundary
condition was based on the first two terms of the
asymptotic representation of the general solution to
Laplace's equation. In this work, we suggest the
following asymptotic form for the potential u

an3

p“3 cosnzd +... (4)

any A
= —=cosn;$ + —= +
—C0s 19 = cosnyd

P P
with n1 < n3 <n3. From (4), we can see that
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du Du Ao

$ + re = -F-)E:-l—cosnzcb(nl—nz)
o (ny-ng) + &)
t— cosnzd(ny—ng) +. ..

Thus, we define the first order operator B1 to be
_du  nmu 1
B1u=$+?—— O(pn2+1) (6)

Similarly, the second and third order operators can
be expressed as

(2, netl )(i 2;)
Bzu_(aap+ 5 lap;p u 1 (7
B3u = (—a—a + (n3+2)-5)(-a—p— + (n2+1)5-)
du u
(g + nlg) (8)

For the finite element scheme formulation
employed in this work, it is more desirable to have
an access to the asymptotic representation for the
normal derivative of u instead of the boundary
condition operators derived above. To this end, we
combine the B3 operator in (8) and make use of the
Laplace's equation to trade the second-order
derivative in p, viz., upp, for the second-order
angular derivative, u¢¢. Then, by following the
procedure described in [6], we can obtain the
following expression for the normal derivative up in
the local coordinate system (t,n), where t and n are
the tangent and normal, respectively, to the
triangular edge lying on the outer boundary I'y,

%3 = _(nl,nz,n3,p)u+§ut+[_3(n1,n25n3,P)utt (9)

In the above equation u; and ug; are the first- and
second-order tangential derivatives, respectively, and

(_x(n1,n2,n3,p)=—(xosin90—yocos90)

nnon3

5 (10)
p“(nny+nins+nyns)
[.’)(n1,n2,n3,p)=(xosineo—yocose)(,)3
N+ ()
pz(n1n2+n1n3+n2n3)
&:-1—2(—t(xosin90—yocoseo)+-%-sin260(y(2,—x?,)
p
+X0y0C08290) (12)

where 00, X0, yo, and t are as shown in Figure 2.
More details on the implementation of (9) in the
finite element scheme can be found in [6].
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Figure 2. A triangular element residing on the outer
boundary and its local coordinates.

III. Numerical Results

A. Two conductors

Consider the two coupled microstrips shown in
Figure 3. The higher-order asymptotic boundary
condition operator given by (9) was applied on a
rectangular outer boundary. Choosing {1, 2, 4} for
the set {n1, n2, n3}, the finite element problem was
solved for the electrostatic potential u and the
capacitance matrix was computed. Table 1 shows the
capacitance matrix values for the same problem that
have been published elsewhere [7], together with
those obtained by using a p.e.c. shield, the asymptotic
boundary condition (the method of [6]), and the
higher-order asymptotic boundary condition (present
method). As Table 1 indicates, while both the
present method and the simple asymptotic boundary
condition yield more accurate results than those
obtainable with a perfectly conducting shield placed
at the same location, the higher-order asymptotic
boundary condition results compare more favorably
with the published work based on an integral
equation technique.

\Outer Boundary
(PEC or ABC) 1.7
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Figure 3. Coupled microstrips with rectangular
outer boundary
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B. Six conductors

Consider the six-conductor system shown in
Figure 4, There are no published results for this
configuration; however, we have compared our
results with those derived by using the computer
program developed by Harms et al. {8], which uses
an integral equation formulation in the spectral
domain followed by an iterative method of solution.
For this configuration, although the simple ABC of
[6] yields more accurate results than those obtainable
with a perfectly conducting shield placed at the same
location; the error in the capacitance matrix is
noticeable, especially for the off-diagonal terms.
Again the higher-order asymptotic boundary
condition operator given by (6) was applied on a
conformable rectangular outer boundary with a
choice of the set {ni, n2, n3} to be equal to {1, 5,
10}. As Table 2 indicates, the higher-order
asymptotic boundary condition yields a significant
improvement over the simple asymptotic boundary
condition, especially for the off-diagonal terms of the
capacitance matrix.

Outer Boundary
(PEC or ABO)

>iSiabi

Figure 4. Six-conductor geometry.

Clearly, the improvements brought about by the
higher-order asymptotic boundary condition are a
direct consequence of its ability to incorporate
lower- and higher-order terms through the choice of
the set {n1, n2, n3}. Based on numerical
investigations, it was determined that the optimal
choice of the set {n1, np, n3} is {1, p/2, p} where p
is the distance from the origin to the middle of the
edge of the triangular element residing on the outer
boundary (see Figure 2).

IV. Conclusions

Starting from the asymptotic representation of the
general solution to Laplace's equation, we have
derived a higher-order asymptotic boundary
condition that combines both the lower- and higher-
order terms for a circular outer boundary. This
boundary condition was subsequently generalized to
the case of an arbitrary outer boundary and applied
to the case of a rectangular outer boundary. The



Reference Shield ABC  Higher Order Error Error Error

[7] ABC Shield-[7] ABC-[7] HOABC-[7]
C(1,1) 0.92x10-10  0.10x10-% 0.92x10-10  0.92x10-10 183% 027% 0.06%
C(1,2) -0.85x10-11 -0.47x10-11 -0.80x10-11 -83x10-11 445%  5.20% 1.48%
C(2,1) -0.85x10-11 -0.47x10-11 -0.80x10-11 -83x10-11 445%  520% 1.48%
C(2,2) 0.92x10-10  0.10x10-9 0.92x10-10  0.92x10-10 183%  027% 0.06%

Table 1.

Capacitance matrix for the coupled microstrips of Figure 3.

Iterative

(8]

Shield

ABC

Higher

Error

Error

Error

Order ABC Shield-[8JABC-[8] HOABC-[8]

C(1,1) 0.66x10-10
C(1,2) -0.27x10-10
C(1,3) -0.54x10-11
C(1,4) -0.20x10-11
C(1,5) -0.99x10-12
C(1,6) -0.70x10-12
C(2,2) 0.78x10-10
C(2,3) -0.25x10-10
C(2,4) -0.46x10-11
C(2,5) -0.17x10-11
C(2,6) -0.99x10-12
C(3,3) 0.79x10-10
C(3,4) -0.25x10-10
C(3,5) -0.46x10-11
C(3,6) -0.20x10-11
C(4,4) 0.79x10-10
C(4,5) -0.25x10-10
C(4,6) -0.54x10-11
C(5,5) 0.78x10-10
C(5,6) -0.27x10-10
C(6,6) 0.66x10-10

0.84x10-10
-0.26x10-10
-0.37x10-11
-0.11x10-11
-0.45x10-12
-0.18x10-12
0.87x10-10
-0.26x10-10
-0.38x10-11
-0.12x10-11
-0.45x10-12
0.87x10-10
-0.26x10-10
-0.38x10-11
-0.11x10-11
0.87x10-10
-0.26x10-10
-0.37x10-11
0.87x10-10
-0.26x10-10
0.84x10-10

0.68x10-10
-0.31x10-10
-0.60x10-11
-0.22x10-11
-0.10x10-11
-0.60x10-12

0.84x10-10
-0.28x10-10
-0.48x10-11
-0.18x10-11
-0.10x10-11

0.85x10-10
-0.28x10-10
-0.48x10-11
-0.22x10-11

0.85x10-10
-0.28x10-10
-0.60x10-11

0.84x10-10
-0.31x10-10

0.68x10-10

0.66x10-10
-0.29x10-10
-0.56x10-11
-0.19x10-11
-0.79x10-12
-0.44x10-12
0.80x10-10
-0.26x10-10
-0.46x10-11
-0.15x10-11
-0.79x10-12
0.81x10-10
-0.26x10-10
-0.46x10-11
-0.19x10-11
0.81x10-10
-0.26x10-10
-0.56x 10-11
0.80x10-10
-0.29x10-10
0.66x10-10

26.83%
5.340%
32.56%
43.711%
54.30%
74.10%
11.03%
3.960%
17.23%
29.03%
54.30%
10.14%
4.870%
17.23%
43.71%
10.14%
3.960%
32.56%
11.03%
5.340%
26.83%

2.620%
13.05%
9.240%
8.320%
0.840%
14.52%
7.480%
11.10%
4.740%
4.610%
0.920%
7.680%
10.91%
4.750%
8.410%
7.680%
11.10%
9.310%
7.480%
13.08%
2.550%

0.213%
4.983%
2.826%
7.631%
20.73%
36.74%
1.713%
5.220%
0.193%
9.869%
20.67%
2.307%
4.043%
0.127%
7.416%
2.307%
5.220%
3.053%
1.713%
4.983%
0.328%

Table 2. Capacitance matrix (upper half) for the six-condutor structure of Figure 4.

numerical results for two- and six-conductor
configurations demonstrated that the use of the
higher-order asymptotic boundary condition results
in a significant improvement over the simple
asymptotic boundary condition employed in a
previous work.
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