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Abstract The finite element method is employed to
study open, arbitrarily-configured two-dimensional
transmission line structures in the quasi-TEM

regime. An improved version of a previously

developed asymptotic boundary condition(ABC) is

used to truncate the open region. Results for two-

and six-conductor configurations are presented to

illustrate the superiority of this method over both the

conventional approach where a perfectly conducting,

enclosure is employed to truncate the FEM mesh, and
the original ABC introduced previously by the
authors. The results presented are of particular
interest for estimating crosstalk and signal distortion
in printed circuits.

I. Introduction

With the continuous advances in solid state devices

technology in terms of both speed and size, a number
of challenges are presented to the packaging engineer
who has to accommodate a multitude of these devices

on a limited real estate available on the circuit board.
In the absence of reliable design tools, digital circuit

packaging is carried out through a costly and lengthy

trial and error process. Thus there exists a critical

need for computer-aided design tools that are capable

of predicting the electrical performance of a given

package, e.g., crosstalk and signal distortion, in a
reliable fashion. Understanding how printed circuit

layouts can affect these quantities is essential for
improved package designs. A first step toward

achieving this goal entails the investigation of the
signal integrity for a class of arbitrarily-configured
two-dimensional transmission line structures.

A plethora of techniques are available in the
literature for dealing with different transmission line

configurations. However, a majority of these
approaches are limited in their application to thin

conducting etches and/or to structures containing
dielectrics with planar interfaces. In contrast, the

finite element method(FEM), can handle conductors
with arbitrary cross-sections and arbitrarily
inhomogeneous dielectrics. However, one drawback

of FEM is that, in dealing with open region

problems, it requires the introduction of an artificial
outer boundary in order to limit the number of node

points to a manageable size. The most common

method for tn.mcating an open region is to use of a

perfect electric conductor as an external shield or to

employ infinite elements for the same purpose [1-5].
Both of these approaches have major drawbacks and

attempt was made in [6] to overcome some of them
by applying an asymptotic boundary condition (ABC)

on the outer boundary. The asymptotic boundary

condition mimics, to a certain degree, the behavior

of the field at infinity and is designed to yield

accurate results in the interior region without the

need for an exorbitantly large number of mesh

points. Furthermore, the use of ABC does preserve

the sparsity of the discretized finite element matrix
and is, therefore, an attractive candidate for
numerical applications. It was demonstrated in [6]

that the asymptotic boundary condition consistently
yields results that are more accurate than those

obtainable with a perfectly conducting shield placed

at the same location. However, in some situations,
the accuracy obtained with the ABC presented in [6]
was not adequate. This lack of accuracy is
attributable to the fact that the asymptotic boundary

condition operator used in [6] was based only on the
use of the first two terms of the asymptotic
representation of the solution to the Laplace
equation.

In this paper, we attempt to circumvent this
problem by deriving a higher-order asymptotic

boundary condition. This boundary condition, unlike
the one used in [6] which assumes that in the far

region the solution can adequately be represented by

the first two terms of the series, requires that the
asymptotic representation be a combination of both
the lower- and higher-order terms. As will be

demonstrated later, a significant improvement in the
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finite element solution is achieved for both two- and

six- conductor configurations when the higher-order

ABC is used.

II. Derivation of the Higher-Order
Asymptotic Boundary Condition

Consider the problem of N arbitrarily-shaped
conductors embedded in a multilayered medium
above a ground plane, shown in Figure 1. Let ~T

denote the region exterior to the conductors and rz
the outer boundary enclosing the truncated region.
The potential u must satisfy Laplace’s equation

everywhere in S2T, the constant potential condition

on the conductors, and the asymptotic boundary

condition on the outer boundary r2. Equivalently,

the problem can be described in terms of the
following equations:

V“(&Vu) = O in ~= (1)

.th
u = gi on the 1 conductor (2)

BmU= Oon rz (3)

where u is the electrostatic potential and Bm is the

mth order asymptotic boundary condition.

Figure 1.

Gro~nd Plane

Multi-conductor transmission line in a

multi-layered dielectric region above a
ground plane.

In previous work [6], the asymptotic boundary
condition was based on the first two terms of the
asymptotic representation of the general solution to
Laplace’s equation. In this work, we suggest the

following asymptotic form for the potential u

anl am a~3
u= ~cosnl$ + ~cosnztj + ~c0sn3@ + , ., (4)

P P P

with nl < n2 < n3. From (4), we can see that
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au nlu an2

~ + ~ = pnz+l c0sn20(nl-n2)

an3
+ ~cosn@(nl-n3) + . . . (5)

P
Thus, we define the first order operator B 1 to be

~ y=o 1

‘@”~+ p ()
(6)

P
n2+l

Similarly, the second and third order operators can

be expressed as

‘+$+%%+3 (7)

(
~ + (n3+2)~

‘3U = ap )(
~ + (n2+1)~

p ap )

(8)
.-r

For the finite element scheme formulation

employed in this work, it is more desirable to have
an access to the asymptotic representation for the

normal derivative of u instead of the boundary

condition operators derived above. To this end, we

combine the B3 operator in (8) and make use of the

Laplace’s equation to trade the second-order

derivative in p, viz., up p, for the second-order

angular derivative, u~~. Then, by following the

procedure described in [6], we can obtain the
following expression for the normal derivative un in

the local coordinate system (t,n), where t and n are
the tangent and normal, respectively, to the

triangular edge lying on the outer boundary r2+

au -
— —

x
= cx(n1,n2,n3,p)u+-yut+ P(nl,nz,ns,P)utt (9)

In the above equation ut and utt are the first- and

second-order tangential derivatives, respectively, and

;(nl,n2,n3,p)=–(xOsinf30-yOcos(30)

n1n2n3
(lo)

p2(nlnz+nlnq+n@

j(nl,n2,n3,p)=(xOsin90-yOc0s90)3

n 1+n2+n3
(11)

p2(nln,+nlns+nzna)

-1
F?

(
–t(xOsineO-yOcO s90)+~sin290(y~-x~)

P

+xoyoc0s2eo) (12)

where f-lo, XO, yo, and t are as shown in Figure 2.

More details on the implementation of (9) in the

finite element scheme can be found in [6].
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Figure 2. A triangular element residing on the outer

boundary and its local coordinates.

III. Numerical Results

A. Two conductors
Consider the two coupled microstrips shown in

Figure 3. The higher-order asymptotic boundary
condition operator given by (9) was applied on a
rectangular outer boundary. Choosing {1, 2, 4} for
the set {nl, nz, ns }, the finite element problem was
solved for the electrostatic potential u and the
capacitance matrix was computed. Table 1 shows the
capacitance matrix values for the same problem that
have been published elsewhere [7], together with
those obtained by using a p.e.c. shield, the asymptotic
boundary condition (the method of [6]), and the
higher-order asymptotic boundary condition (present
method). As Table 1 indicates, while both the
present method and the simple asymptotic boundary
condition yield more accurate results than those
obtainable with a perfectly conducting shield placed
at the same location, the higher-order asymptotic
boundary condition results compare more favorably
with the published work based on an integral
equation technique.

Figure 3. Coupled microstrips with rectangular
outer boundary

B. Six conductors
Consider the six-conductor system shown in

Figure 4, There are no published results for this
configuration; however, we have compared our
results with those derived by using the computer
program developed by Harms et az. [8], which uses
an integral equation formulation in the spectral
domain followed by an iterative method of solution.
For this configuration, although the simple ABC of
[6] yields more accurate results than those obtainable
with a perfectly conducting shield placed at the same
location, the error in the capacitance matrix is
noticeable, especially for the off-diagonal terms.
Again the higher-order asymptotic boundary
condition operator given by (6) was applied on a
conformable rectangular outer boundary with a
choice of the set {nl, nz, ns} to be equal to {1, 5,
lo}. As Table 2 indicates, the higher-order
asymptotic boundary condition yields a significant
improvement over the simple asymptotic boundary
condition, especially for the off-diagonal terms of the
capacitance matrix.

Figure 4. Six-conductor geometry.

Clearly, the improvements brought about by the
higher-order asymptotic boundary condition are a

direct consequence of its ability to incorporate
lower- and higher-order terms through the choice of

the set {nl, nz, n3}. Based on numerical

investigations, it was determined that the optimal

choice of the set {nl, nz, n3} is {1, p/2, p } where p

is the distance from the origin to the middle of the

edge of the triangular element residing on the outer

boundary (see Figure 2).

IV. Conclusions

Starting from the asymptotic representation of the
general solution to Laplace’s equation, we have
derived a higher-order asymptotic boundary
condition that combines both the lower- and higher-
order terms for a circular outer boundary. This

boundary condition was subsequently generalized to
the case of an arbitrary outer boundary and applied

to the case of a rectangular outer boundary. The
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Reference Shield ABC Higher Order Error Error Error
[7] ABc Shield-[7] ABC-[7] HOABC-[7]

C(l,l) O.92X1O-10 0.10x10-9 O.92X1O-10 O.92X1O-10 18.3% 0.27% 0.06%
C(1,2) -O.85X1O-11 -O.47X1O-11 -O.8OX1O-11 -.83x1O-11 44.5% 5.20% 1.48%
C(2,1) -O.85X1O-11 -O.47X1O-11 -O.8OX1O-11 -.83x1O-11 44.5% 5.20% 1.48%
C(2,2) 0.92x10-lo O.1OX1O-9 0.92x10-lo 0.92x10-lo 18.3% 0.27% 0.06%

Table 1. Capacitance matrix for the coupled microstrips of Figure 3.

Iterative Shield ABC Higher Error Error Error

[8] Order ABC Shield-[8]ABC-[8] HOABC-[8]

C(l,l) 0.66x10-10 0.84x10-10 0.68x10-10 0.66x10-10 26.83% 2.620% 0.213%

C(1,2) -0.27x10-10 -0.26x10-10 -0.31 x10-10 -0.29x10-10 5.340% 13.05% 4.983%

C(1,3) -0.54x10-11 -0.37x10-11 -O.6OX1O-11 -0.56x10-11 32.56% 9.240% 2.826%

C(1,4) -0.20x10-11 -O.llXIO-ll -0.22x10-11 -0.19x10-11 43.71% 8.320% 7.631%

C(1,5) -0.99x10-12 -0.45x10-12 -O.lOXIO-ll -0.79x10-12 54.30% 0.840% 20.73%

C(1,6) -0.70x10-12 -0.18x10-12 -0.60x10-12 -0.44x10-IZ 74.10’%0 14.52% 36.74%

C(2,2) O.78X1O-10 0.87x 10-10 O.84X1O-10 O.8OX1O-10 11.03% 7.480% 1.71370

C(2,3) -0.25x 10-10 -0.26x 10-10 -O.28X1O-1O -0.26x 10-10 3.960% 11.10% 5.220$z0

C(2,4) -0.46x10-11 -0.38x10-11 -0.48x10-11 -O.46X1O-11 17.23% 4.740% 0.193%

C(2,5) -0.17x10-11 -0.12x10-11 -0.18 x10-11 -0.15x10-11 29.03% 4.610% 9.869%

C(2,6) -0.99x10-12 -0.45x10-12 -O.lOXIO-I1 -0.79x10-12 54.30% 0.920% 20.67%

C(3,3) 0.79x10-10 0,87x10-10 0.85x10-10 0.81x10-10 10.14% 7.680% 2.307%

C(3,4) -0.25x10-10 -0.26x10-10 -0.28 x10-10 -O.26X1O-1O 4,870% 10.9190 4.043%

C(3,5) -O.46X1O-11 -0.38x10-11 -0.48x10-11 -O.46X1O-11 17.23% 4.750% 0.127%

C(3,6) -0.20x10-11 -O.llXIO-ll -0.22x10-11 -0.19x10-11 43.7170 8.410% 7.416%

C(4,4) 0.79x10-10 0.87x10-10 0.85x10-lo 0.81x10-lo 10.14% 7.680% 2.307%

C(4,5) -0.25 x10-10 -0.26x10-lo -0.28x10-lo -0.26x10-lo 3.960% 11.10% 5.220%

C(4,6) -0.54x10-11 -0.37x10-11 -0.60x10-11 -0.56x 10-11 32.56% 9.310% 3.053%

C(5,5) 0.78x 10-10 0.87x 10-10 0.84x 10-10 O.8OX1O-10 11.03% 7.480% 1.713%

C(5,6) -0.27x10-10 -0.26x10-I0 -0.31 x10-10 -0.29x10-I0 5.340% 13.08% 4.983%

C(6,6) 0.66x10-10 0.84x10-10 0.68x10-10 0.66x10-10 26.83% 2.550% 0.328%

Table 2. Capacitance marnx (upper half) for the six-condutor structure of Figure 4.
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